ABSTRACT |

Laser scanning techniques play very important role in acquiring of spatial data. Once the point cloud is available, the data processing must be performed to achieve the final products. The segmentation is an inseparable step in point cloud analysis in order to separate the fragments of the same semantic meaning. Existing methods of 3D segmentation are divided into two categories. The first family contains algorithms functioning on principle of fusion, such as surface growing approach or split-merge algorithm. The second group consists of techniques making possible the extraction of features defined by geometric primitives i.e.: sphere, cone or cylinder. Hough transform and RANSAC algorithm (RANdom SAmple Consensus) are classified to the last of aforementioned groups. This paper studies techniques of point cloud segmentation such as fully automatic plane detection. Proposed method is based on RANSAC algorithm providing an iterative plane modelling in point cloud affected by considerable noise. The algorithm is implemented sequentially, therefore each successive plane represented by the largest number of points is separated. Despite all advantages of RANSAC, it sometimes gives erroneous results. The algorithm looks for the best plane without taking into account the particularity of the object. Consequently, RANSAC may combine points belonging to different objects into one single plane. Hence, RANSAC algorithm is optimized by analysing the adjacency relationships of neighbouring points for each plane. The approach based on graph theory is thus proposed, where the point cloud is treated as undirected graph for which connected components are extracted. Introduced method consists of three main steps: identification of k-nearest neighbours for each point of detected plane, construction of adjacency list and finally connected component labelling. Described algorithm was tested with raw point clouds, unprocessed in sense of filtration. All the numerical tests have been performed on real data, characterized by different resolutions and derived from both mobile and static laser scanning techniques. Obtained results show that proposed algorithm properly separates points for particular planes, whereas processing time is strictly dependent on number of points within the point cloud. Nevertheless, susceptibility of RANSAC algorithm to low point cloud density as well as irregular points distribution is still an important problem. This paper contains literature review in subject of existing methods for plane detection in data set. Moreover, the description for proposed algorithm based on RANSAC, its principle, as well as the results is also presented. |