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ABSTRACT: A few years ago, Schaffrin and Iz (2008) generalized the traditional Kalman filter in 

such a way that it could handle observation equations with errors-in-variables. This approach led to 

what has since become known as Total Kalman Filtering (TKF). A drawback, however, was that the 

usual “data snooping” techniques were no longer applicable in the same manner. Therefore, in the 

presence of outliers, new search techniques need to be devised in order to accommodate for those 

errors-in-variables with non-zero expectations. In this contribution, an attempt will be described to 

prepare a suitable algorithm for this purpose in the context of mobile mapping. 

 

 

INTRODUCTION 

 

For Mobile Mapping applications that are oftentimes based on the integration of GPS and 

INS - and possibly further - sensors, algorithms from the Kalman filter family are usually 

chosen which - after linearization - can be best derived in a Dynamic Linear Model (DLM). 

More often than not, however, the matrix in the observation equations is also filled with 

measured quantities and must, therefore, be considered as affected by random errors. This 

generalization eventually led to the formulation of the Total Kalman Filter by Schaffrin and 

Iz (2008). 

 

While the Total Kalman Filter can optimally reduce the influence from all the random 

errors (EIV), it is certainly not immune against the occasional outlier that may occur in any 

of the measurements, no matter whether they belong to the observation vector or the 

coefficient matrix. Hence, an attempt to identify/estimate such outliers is in order and will 

ultimately lead to a “data snooping” procedure similar to the one developed by Baarda 

(1968) for the simple Gauss-Markov Model. 

 

In the following chapter 1, the standard EIV-Model will be reviewed, and two of the most 

popular algorithms will be presented that both are able to generate the TLS solution quite 

efficiently. Afterwards, in chapter 2, the observation vector on the left side is allowed to 

contain one outlier at a time which needs to be estimated. Moreover, its effect on the other 

estimated parameters ought to be determined as well; ultimately, a decision must be made 

as to whether this effect is tolerable or not. Finally, the far more complex case of an outlier 

in the coefficient matrix is considered in chapter 3, and formulas for its estimation are 

given, before some conclusions are drawn in chapter 4. 
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1. A REVIEW OF THE EIV-MODEL 

 

The standard model with Errors-in-Variables (EIV), i.e. with a coefficient matrix that is 

affected by random errors, can be defined by the observation equation 
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where e denotes the usual 1×n  random error vector and 
A

E  the new mn ×  random error 

matrix, for both of which the stochastic characteristics may be given as 
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Here, y denotes the 1×n  vector of (incremental) observations, that are linearly related to the 

1×m  vector ξ  of unknown parameters through the stochastic (observed) mn ×  coefficient 

matrix A of rank nm < . 

 

Note that both e and 
A

E  possess the same (unknown) variance component 
2

o
σ , are 

uncorrelated, but involving the same cofactor matrix Q for all columns of A as for the 

vector y. As usually, “vec” denotes the operation that transforms a matrix into a vector by 

stacking all its columns one underneath the previous  one,  and 

 

 ⊗  denotes the so-called “Kronecker-Zehfuss product” of matrices, defined by 
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more details about this unconventional product can be found in the Appendix of the 

textbook by Grafarend and Schaffrin (1993) among many other sources. 

 

Obviously, in spite of the original linearization, the observation equations (1.1a) can be 

rewritten in the form 
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which, along with (1.1b), would form a classical nonlinear Gauss-Helmert Model in the 

sense of Helmert (1907). 

 

Herein, Least-Squares adjustment could obviously be treated by iterative model 

linearization according to the principles by Pope (1972), as shown by Neitzel and Petrovic 

(2008). But a more direct approach had been designed by Schaffrin et al. (2006) already 

that leads to the formulation of nonlinear normal equations and avoids a model change 
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altogether. Moreover, it had been shown by Schaffrin (2006; 2007) that this approach is  

a true generalization of the classical approach by Golub and van Loan (1980) that results in 

a certain eigenvalue problem and is associated with the notion of Total Least-Squares 

(TLS) estimation. When applying the traditional Lagrange technique, with 
1

:
−

= QP  and λ  

as 1×n  vector of Lagrange multipliers, the following target function 
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ought to be made stationary in order to find the TLS solution. The necessary conditions are 

easily derived by forming the respective partial derivatives and setting them to zero. This 

leads to the following Euler-Lagrange conditions: 
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as, from (1.5a-b), the following relationships can be derived: 
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Thus, from (1.5c-d) and (1.6b), the following normal equations follow now immediately: 
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as “Total Sum of Squared Residuals”. By neglecting the randomness of v̂ , a first-order 

approximation for the dispersion matrix can now be obtained as: 
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In addition, (1.5d) can be transformed into the relationship: 
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or, equivalently, into: 
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Combining now (1.9b) with (1.7a) leads to 
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which shows that v̂ turns indeed out as the minimum eigenvalue of the matrix on the left 

side of equation (1.10). This obviously was the original contribution of Golub and van Loan 

(1980). 

 

In the following two chapters, the aim will be directed towards  generalizing the formulas 

above to the two cases where either the vector y or the matrix A is, in a single component, 

affected by an outlier. 

 

2. OUTLIERS AFFECTING THE OBSERVATION VECTOR 

 

In this chapter it is assumed that one outlier may have occurred in the observation vector y, 

and none in the coefficient matrix A, thus leading to the modified observation equations 
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where  
j

η  denotes the j-th unit vector (here of size 1n × ). Then, the stochastic 

characteristics for e  and 
A

e can be maintained as given in formula (1.1b). 
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Consequently, the corresponding Lagrange approach as sketched in chapter 1 will have to 

be modified accordingly, thus starting from the target function 
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before  making  it  stationary  for  the  identification of    the   new   

TLS solution. This leads to the three Euler-Lagrange conditions (1.5a-c) and two new ones, 

namely: 
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Obviously, (2.2b) can be used to solve for 
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which becomes one part of the new normal equations, using (1.5c), via 

 

       ⇒⋅−=−−
)()()()(

ˆˆˆˆ jjj

oj

Tj
vPANc ξξηξ                               (2.3c) 

       ⇒ cPAIvN
j

oj

Tj

m

j
=⋅+−

)()()( ˆˆ)ˆ( ξηξ                                  (2.4a) 

 

with 

 

         

)ˆˆ()ˆˆ(

]ˆ)ˆ(1[

~)()~(~)~(        

]ˆ)ˆ(1[]ˆ)ˆ[(ˆ

)()()()(

1)()(

)()()()(

)()()()()(

j

oj

jTj

oj

j

jTj

j

Am

Tj

A

jTj

jTjjTjj

AyPAy

ePIeePe

Qv

ξηξξηξ

ξξ

ξξλλ

−−−−⋅

⋅+=

=⊗+=

=+⋅=

−
                      (2.4b)

 

Errors-in-variables for mobile mapping algorithms in the presence of outliers  

 

 



382 

 

On the other hand, (2.2a) in combination with (2.3a) yields 
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as the second part of the normal equations. (2.4a-c) can be employed to solve for the 

estimated size of the outlier via 
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and, by combining (2.4a) with (1.7a), an update formula can be provided through 
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where 
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measures the increase in the TSSR due to the neglected outlier. In a first-order 

approximation, it may hence be conjectured that the test statistic 
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follows a central F-distribution under the null hypothesis that “no outlier is present” in the j-

th observation, yy
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Unfortunately, due to the nature of (2.4c), it does not seem possible to replace the above 

formulas in such a way that an equivalent eigenvalue problem arises where )(
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j
v  would now 
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represent the modified smallest eigenvalue. So, we leave this issue as an open question, and 

rather turn to the second case where the coefficient matrix may contain one single outlier. 

 

3. OUTLIERS AFFECTING THE COEFFICIENT MATRIX 

 
Now, in order to take an outlier in the coefficient matrix A into account, the original 

observation equation (1.1a) is modified as follows: 
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where 
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η denotes the j-th unit vector of size 1×n  and 
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η the k-th  

unit vector of size 1×m . With this modification, the stochastic characteristics of e and 
A

e  

may be maintained as given in formula (1.1b). 

 

Following the Lagrange approach as before, the relevant target function now reads: 
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which needs to be made stationary in order to find the new TLS solution. Again, the first 

two of the necessary Euler-Lagrange conditions remain identical to (1.5a-b), but now 

augmented by three new ones, namely: 
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 (3.2c) can first be used to solve for 

 

Errors-in-variables for mobile mapping algorithms in the presence of outliers  

 

 



384 

1
]ˆˆ1[]ˆˆˆ[ˆ −

+⋅⋅−−=
(jk)T(jk)(jk)T

k

(jk)

oj

(jk)(jk)
ξ)ξ()ξ(ηξηξAyPλ

                       
(3.3a) 

 

    )ˆ(ˆ]ˆ)ˆ(1[ˆ )()()()()()( jkT

k

jk

oj

TjkjkTjkjkT
PANcA ξηξηξξξλ ⋅−−=+⇒          

(3.3b) 

 

Furthermore, in (3.2b) it may be assumed without restricting the generality that  
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Hence, by combining (3.3b-c) with (3.2a), the first part of the new normal equations is 
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In addition, combining (3.3c) with (3.2c) yields the second part via 
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In analogy to the approach of chapter 2, an update solution for )ˆˆ(
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where )ˆ( ξAy −  again represents the residual part of the original TLS solution according to 

(2.6b). The (scaled) size of the outlier can, therefore, be readily estimated from the original 

solution via 
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once the reduction )ˆˆ(
)( jk

vv −  in the TSSR can be calculated directly, i.e. without referring 

to the formula (3.4b) itself. This, however, is beyond the scope of the present paper.  

 

Instead, it is again conjectured that, in a first-order approximation, the test statistic 
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follows a central F-distribution under the null hypothesis that “no outliers are present” in 

the (jk)-element of the coefficient matrix A. 

 

4. CONCLUSIONS AND OUTLOOK 

 

In the case where the observation equations follow an EIV-Model (rather than the standard 

Gauss-Markov Model), the treatment of a single outlier in either the observation vector or 

the (observed) coefficient matrix has successfully been completed. The proposed test 

procedures, however, supposed to establish the significance of any outlier, deserve further 

attention in regard of their actual probability distribution; the test statistics are presently 

conjectured to follow a F-distribution in a first-order approximation. On this basis, “data 

snooping” in the sense of Baarda (1968) is now an option even for EIV-Models; see the 

small example in the Appendix. 

 

Further open questions are still concerned with the notion of reliability, both locally and 

globally. The respective measures may only depend on the elements provided by the model 

definition, not by the chosen estimator. This turns out to be particularly tricky in the case of 

an EIV-Model and has been tackled, at least to some extent, by Schaffrin and Uzun (2011). 
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APPENDIX: A simple example - The straight-line adjustment of four points in 2-D  

(Wolf & Ghilani, 1997, p.426) 

 

Given:     T
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Then:    
T

TLS ]6201.3;2540.0[ˆ =ξ  , 

TSSRv == 4437.0ˆ  , 

2219.0)24/(ˆ)ˆ( 2
0 =−= vTLSσ  . 

In case of a potential outlier in an individual ordinate yj (j=1,..,4), the new )(ˆ)(
j

j vTSSR =  

are listed along with the respective test statistics  jT  : 

  j=1 j=2 j=3 j=4 

 )(ˆ jv   0.4109 0.1602 0.1460 0.3183 

 jT  0.0799 1.7701 2.0393 0.3940 

 

which are all supposed to be F(1,1) distributed; as a result, none of the ordinates are flagged 

as outliers at the  01.0=α  significance level.  

In the matrix A, only the abscissae xj (j=1,..,4) in the first column may be affected by  

a potential outlier. Again, the new  )1(
1

ˆ)(
j

j vTSSR =  are listed along with the respective test 

statistics 1jT  : 

 

 j=1 j=2 j=3 j=4 

 )1(ˆ jv   0.4109 0.1602 0.1460 0.3183 

 1jT  0.0799 1.7701 2.0393 0.3940 

 

leading to no flagging of any abscissa either as, due to the symmetry, all the corresponding 

quantities turn out identical. 
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