The registration of 3D point clouds collected from different scanner positions is necessary in order to avoid occlusions, ensure a full coverage of areas, and collect useful data for analyzing and documenting the surrounding environment. This procedure involves three main stages: 1) choosing appropriate features, which can be reliably extracted; 2) matching conjugate primitives; 3) estimating the transformation parameters. Currently, points and spheres are most frequently chosen as the registration features. However, due to limited point cloud resolution, proper identification and precise measurement of a common point within the overlapping laser data is almost impossible. One possible solution to this problem may be a registration process based on the Iterative Closest Point (ICP) algorithm or its variation. Alternatively, planar and linear feature-based registration techniques can also be applied. In this paper, we propose the use of line segments obtained from intersecting planes modelled within individual scans. Such primitives can be easily extracted even from low-density point clouds. Working with synthetic data, several existing line-based registration methods are evaluated according to their robustness to noise and the precision of the estimated transformation parameters. For the purpose of quantitative assessment, an accuracy criterion based on a modified Hausdorff distance is defined. Since an automated matching of segments is a challenging task that influences the correctness of the transformation parameters, a correspondence-finding algorithm is developed. The tests show that our matching algorithm provides a correct p airing with an accuracy of 99 % at least, and about 8% of omitted line pairs.
|