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ABSTRACT: Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and  
a microprocessor provide inertial digital data from which position and orientation is obtained by 
integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, 
magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. 
Unfortunately, the measurements  of the magnetic  field obtained  with  low  cost  sensors  are  
corrupted  by  several errors including manufacturing defects and external electro-magnetic fields. 
Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading 
measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is 
presented to estimate the values of the bias and scale factor of low cost magnetometer. The main 
advantage of this technique is the use of the artificial intelligence which does not need any error 
modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the 
proposed algorithm improve the heading accuracy and the results are also statistically significant. 
Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined 
with the INS and GPS/Wi-Fi especially in the indoor environments.  
 
1. INTRODUCTION 

In the recent years, inertial sensors are becoming more popular for navigation in cluttered 
indoor environments that are challenging for Global Navigation Satellite Systems (GNSS). 
Inertial Navigation Systems (INS), consist of accelerometers, gyroscopes, and  
a microprocessor, provide position and orientation by integrating the specific forces and 
rotation rates. However, any errors in the inertial sensor data are accumulated rapidly with 
time even with high accuracy sensors. Consequently, regular updates are necessary to 
provide a drift free position and orientation solution. For updating the position, GNSS 
signals are utilized, and for heading updates magnetometers may be employed. 
 
For navigation as well as in control applications, heading information of mobile bodies is  
a paramount importance. The magnetometers based on Anisotropic Magneto-Resistive 
(AMR) technology depend upon the Earth’s Magnetic Field (EMF) from which the heading 
information can be derived. The ubiquitous nature of EMF makes these sensors available in 
airplanes, vehicles, ships, and they are now being explored in hand-held devices. Cameras 
using optical flow, gyroscopes, and odometry (wheel encoder) may also be adopted in 
addition to a magnetometer to get the heading information (Kwon et al., 2006). In order to 
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improve the robustness of the heading solution an optimal fusion of these sensors is 
justifiable. This again depends upon the cost, accuracy, and type of application at hand. 
  
In most of the early research, the calibration proceeds in the heading domain (Guo et al., 
2005). Also in (Crassidis et al., 2005; Gebre and Elkaim, 1995), the calibration algorithm is 
applied in the magnetic field domain. The advantage of applying the calibration algorithm 
in the magnetic field domain is convincing, as we do not have to depend on the heading of 
the sensor prior to calibration. For a given region, the Earth’s total magnetic field is 
constant and its value can be obtained from the International Geomagnetic Reference Field 
(IGRF) model. This becomes a basis for developing a mathematical model for sensor 
calibration (Siddharth et al., 2011). 
 
Different reasons are listed to use Particle Swarm Optimization (PSO) technique over 
statistical based approaches such as Extended Kalman Filter  (EKF) and Particle Filter (PF) 
where  they may fail to converge for the appropriate calibration parameters. These failures 
may be seen in its inherent nature of operation (Siddharth et al., 2005): 

- No a priori knowledge of initial sates. 
- Inaccurate knowledge of noise statistics (Process Noise/state Covariance). 
- Matrix implementation, especially, inversion operation which may lead increased 

computation time and singularity. 
 
Artificial Intelligence (AI) based algorithms are considered as practical tools for nonlinear 
optimization problems (Reeves, 1993) where such algorithms do not require that the 
objective function be differentiable and continuous. PSO is one of the modern heuristic 
algorithms (Kennedy and Eberhart, 1995) and can be applied to nonlinear optimization 
problems. It has gained wide recognition due to its ability to provide solutions efficiently, 
requiring only minimal implementation effort. In the paper we introduce the PSO procedure 
into calibration process to estimate the bias and scale factor. Three bias and three scale 
factor terms corresponding to each axis of the tri-axial magnetometer are estimated, which 
constitutes the six elements of the state vector. The mathematical description and notations 
used for describing all the states is described in section 2. 
 
Section 2 discusses the mathematical background for calibration. In section 3, a brief 
discussion for particle swarm optimization technique is provided. Section 4 describes the 
proposed estimator algorithm adopted in magnetometer calibration. The calibration test 
results with magnetometer data are presented and discussed in section 4. The paper ends 
with a conclusion in section 5. 
 
2. A CONSTRAINED CALIBRATION APPROACH 

Based on the Earth magnetic field, the formulation can be stated by the following 
mathematical equation: 

                                                       � � �� � � �  �                                              (1) 

Also we can write Equation 1 in the form: 
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                                                        H � A��B � b �  ε�                                              (2) 

where,  H = the estimated EMF, 
B = the measured magnetic field, magnetometer readings,� � ��� �� ��� �, 
A = the diagonal matrix of the scale factor where A = diag(SF).  
�� � Scale factor vector ���,  �� , ���� 
� � bias vector ���,  �� , ���� 
ε = the noise 

 
(3) To simplify the mathematical formulation we can ignore the white noise which is not 
part of the model used for calibration parameters in the estimation process, in this case, 
Equation 2 can be rewritten as: 

        H � A��B � b�                    (3) 

The bias and scale factor are estimated subject to: 

          H�� � �H�� � H�� � H H �  0               (4) 

Where H� is the magnitude of Earth’s magnetic field in a given geographical location 
obtained from the IGRF model. (2, 4) The IGRF parameters are revised every five years by  
a group called the International Association Geomagnetism and Aeronomy (IAGA). The 
user is required to input the latitude, longitude and height of the place where the Earth’s 
magnetic field intensity is sought. The 11th generation IGRF accepts the year in between 
1900-2020. The accuracy of the estimated Earth’s magnetic field is claimed to be 1nT  
(0.01 milliGauss) by the IAGA. 
 
3. PARTICLE SWARM OPTIMIZATION 

Bird flocks, fish schools, and animal herds are examples of natural systems where an 
organized behaviour produced impressive, collision-free, and synchronized moves.  In such 
systems, the behaviour of each group member is based on simple inherent responses. 
Although swarm intelligence is still in its infancy compared to other paradigms in artificial 
intelligence, nevertheless, it is an attractive new research field.  
 
PSO is a population based stochastic optimization technique, developed by Eberhart and 
Kennedy in 1995 (Kennedy, et al., 2001). They claimed that searching for food source is 
similar to finding a solution for a common research goal (Hernane et al., 2008).  
In comparison with other AI optimization techniques, the power of PSO lies in its 
simplicity in implementation. The performance of different optimization techniques in 
industry and computing are evaluated  and  compared which indicates  that  PSO performed  
better  than  other algorithms  in  terms  of  success  rate, solution quality, and convergence 
speed (Elbeltagi et al., 2008).  
 
The PSO technique employs a set of feasible solutions called a ‘swarm of particles’ that are 
populated in the search space with initial random positions and velocities and at any 
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particular instant, each particle has its own position and velocity. During each iteration, 
each particle is updated by following two "best" values. The particle best, Pbest or "#$, is the 
best position of the particle itself. Another "best" value is the global best, gbest or "%$, which 
is the best value obtained so far by any particle in the population. All particles have the 
influence of these two bests in its search space (Åkesson et al., 2008). 
 

For a random  particle  swarm   of   N    particles and search space dimension of D, define 
the ith position and change in position of the particle as xi = (xi1,xi2,...,xiD) and  
∆xi = (∆xi1, ∆xi2,..., ∆xiD) respectively. The PSO algorithm can be performed by the 
following equation: 

     ∆'#$(� � ). ∆'#$ � +�,#�$-"#$ � '#$. �  +�,#�$-"%$ � '#$.                     (5) 

        '#$(� � '#$ � ∆'#$(�                                                 (6) 

Where  i = 1, 2, …,N with N the population size,  
c1 and c2 = acceleration coefficients, usually c1 = c2 = 2, 
ri1 and ri2 = random numbers uniformly distributed within the range [0, 1].  
w = inertial weight factor, and the bigger the value of w, the wider is the search 
range. 
∆� = magnitude error of total magnetic field  

 
Equation 5 is used to determine the ith particle's new velocity, change in position, at each 
iteration, while Equation 6 provides the new position of the ith particle by adding the 
increment in the position to its current position. The initial weight value is fixed to 1 all the 
time where c1 and c2 values are 2.  

                    ∆� � H�� � H H                                  (7) 

                              �/0_2�345 �  6∑∆���                                  (8) 

The performance of each particle is measured according to a fitness function, which is 
problem-dependent. In optimization problems, the fitness function is usually identical with 
the objective function under consideration. Equation 7 shows the used fitness function 
which it is the difference (error) between the estimated total magnetic field and the 
reference value. The reference value is 170 mGauss in the case of 2-D calibration and  
560 mGauss for the 3-D calibration case. The fitness value is computed in Equation 8 as the 
square root of the summation of the squared error.    

The algorithm re-evaluates all particles’ locations after each iteration and takes the new best 
values. To find the optimum value, a recurring searching process is done until the 
maximum iteration number is reached or the minimum error condition is achieved. The 
PSO can be shown as in Figure 1: 
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Fig. 1: The basic PSO algorithm 
 

4. METHODOLOGY 

4.1 PSO Based Calibration Approach 

The proposed algorithm is used to estimate the bias (b) and scale factor (SF) by minimizing 
the difference between the measured magnetic field and the true magnetic field derived 
from IGRF model. It exploits the fact that the incorrect heading estimates due to the 
magnetometer biases, scale factors and declination angles have a relationship with the true 
heading. The PSO algorithm is used to estimate the required parameters for calibration. 
 
As mentioned in section 2 and by substituting Equation 2 in Equation 3, the difference 
between the true total Earth magnetic field and the measured one can be written as:  

   ���� � ����-���� � ��. �  �8�                                        (9)  

                ���� � ����-���� � ��. � �8� � 0 

                � � ������������ � �� � �8� � 0 

                � � ���9� � �� � �8� � 0 

                ��9� � 4� � : � 0                                                             (10) 

Where 9 �  �������� 

4 �  �2��9 
: �  ��9� � �8�  
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The value scale matrix A is evaluated as the diagonal matrix of the scale factor where A = 

diag(SF).  
The main objective of proposed algorithm is to estimate the values of the scale factor and 
bias respectively; 

�� � ��� ,  �� , ���� , and    � � ��� ,  �� , ���� .  
 
The different values of the bias and scale factor are estimated by using Equation 5. 
 
4.2 The Auto-Selection Algorithm  

For the conventional magnetometer based calibration approaches, the whole measurement 
is employed and involved in the estimation process. Such techniques don’t have the ability 
to minimize, or at least decrease, the required time for the calibration process. Certain real 
time navigation applications demand fast and accurate calibration. It is complicated to have 
flexible algorithm that can provide accurate calibration parameters in suitable time. The 
auto-selection algorithm is used to decide which part of the raw data will be used while in 
the calibration mode. The proposed technique is searching for the maximum change in the 
magnetic field for each axis and gets the interval in between. The algorithm receives the 
overall raw measurements and returns the start and end indices of the nominated interval as 
shown in Figure 2.  

 
Fig. 2: The auto-selection algorithm 

 
4.3 Stopping Criterion  

The PSO based calibration parameters estimation technique is based on an iterative process. 
To estimate the bias and SF, an iterative process is conducted during the proposed 
algorithm for the required parameters. In order to increase the convergence speed of the 
algorithm, the trust in the random ranges assigned to the parameters of interest may be set 
wisely. This may be done by knowing these parameters roughly from the auto-selection 
algorithm described earlier. Over the iterations, the bias and SF values converge to the best 
values. The purpose of our method is to decide when the calibration process is done. The 
stop criterion takes three different levels: 

- Maximum number of iterations  
- Hit a minimum error  
- Hit the tolerant of the change in the bias and SF values 
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5. RESULTS 

In a free-environment,  the  norm  of  the  magnetometer vector  measurement  should  be  
equal  to  the magnitude of the Earth’s magnetic field which can be extracted from  
a specific geomagnetic model. To assess the new calibration technique, field tests were 
conducted at the University of Calgary campus including static, walking, indoors and 
outdoors cases. All measurements are raw sensor readings from the Honeywell 3-axis 
magnetometer (HMC5843). For the 2D calibration, the magnetometer was rotated 360◦ in 
the horizontal plane and then the heading was computed using the estimated SF and b.  
In all tests, the algorithm successfully converges to a good estimate of the SF and b values 
and showed improvement in terms of heading accuracy after the calibration. 
 
5.1 Basic PSO Results 

The first group of results is for the basic PSO algorithm in indoor environment where the 
whole magnetometers measurements are passed to the calibration algorithm. The test is 
conducted in multi-sensor lab at the University of Calgary. The test is a two 360 degrees 
turn about z-axis using a rotation table (shown in Figure 3).  The PSO for indoor scenario 
did fairly well in estimating the bias and scale factors.  
 

    
 

 Fig. 3: Rotation table 
 
Figures 4-7 illustrate the calibration results where PSO represents the solutions of Particle 
Swarm Optimization. Figure 4 shows the raw magnetic field in the x and y directions.  
The total horizontal raw and calibrated magnetic fields are shown in Figure 5. 
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Fig. 4: Raw magnetic field measurements 

 
Fig. 5: Horizontal raw and PSO calibrated magnetic field 

 
Fig. 6: Raw heading and PSO corrected 
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Figure 6 shows two 360 degrees turns about z-axis on a rotation-table. The corresponding 
raw heading and PSO corrected are depicted in the figure. Clearly, the PSO based algorithm 
shows the ability to estimate the necessary parameters to provide corrected, calibrated, and 
adjusted results as shown in Figure 7.  
 

 
Fig. 7: 2D calibration for adjusted magnetic field 

 
 
5.2 Applying Auto-Selection Algorithm 

The auto-selection algorithm is applied to accelerate the calibration process and reduce the 
time needed to complete the whole operation. Only a specific, window of the measured data 
is applied to the PSO algorithm. The results show that the PSO continues to performance 
robustly while the total time for the calibration process is reduced. As the PSO is working 
with the input measurements as a whole part, so the number of samples is a very important 
factor which affects the overall performance. The results from the PSO with the whole data 
and part of the data are shown in Figures 8-11. The term “Sel&PSO” refers to the results 
with applying the auto-selection algorithm. While the results from PSO only and Sel&PSO 
showed similar accuracies, the Sel&PSO considerably reduced the time complexity in 
estimating the parameters of interest. The selected part from the data in both x and y 
directions is shown in Figure 10 where this part from the data is selected to cover the 
maximum peak to peak variation in the data.    
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Fig. 8: The selected part of the measurements 

 
Figure 11 shows the total magnetic field with the raw PSO and the PSO with part of the 
data. Although  less information is applied to the PSO algorithm, the accuracy of the results 
hasn’t been affected. 

 
Fig. 9: Total horizontal raw and PSO calibrated magnetic field 

 
As revealed from Figures 10 and 11, the proposed algorithm succeeded to give good 
performance. 
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Fig. 10: Raw heading and PSO corrected 

 
Fig. 11: 2D calibration for adjusted magnetic field. 

 
Different tests are conducted in different situations where Table 1 summarizes the results. 
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Tab. 1: calibration parameters for both x and y axis 
 

Data 
Test 

# 

# of 

Samples 
SF bias (mGauss) 

All 
1 

1240 [0.873   0.998] [-87.279  -54.190] 

Part 297 [0.866   0.973] [-87.419  -50.008] 

All 
2 

1560 [0.601   0.655] [33.490    42.887] 

Part 401 [0.598   0.649] [32.674    42.193] 

All 
3 

1760 [0.925   1.018] [66.016    61.332] 

Part 487 [0.913   1.050] [63.461    58.556] 

All 
4 

1493 [2.498   2.720] [36.912    42.229] 

Part 489 [2.535   2.773] [50.207    51.725] 

All 
5 

2360 [0.791   0.872] [19.483    42.121] 

Part 538 [0.793   0.869] [19.986    43.142] 

 
5.3 Applying Stop-Criterion Technique 

Stop criterion technique aims to indicate that the calibration process is achieved efficiently. 
Once the bias and scale factor values are converged, the algorithm stops and produces the 
final estimated values of the parameters. This method reduces the total number of iterations 
improving the potential for real time applications. Results are depicted in Figures 12-15 
where the term “PSO&Stop” refers to the modified PSO algorithm with the stop-criterion 
technique.  
 

 
Fig. 12: The selected part of the measurements 
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Fig. 13: Total horizontal raw and PSO calibrated magnetic field 

 
Fig. 14: Raw heading and PSO corrected 

 
Fig. 15: 2D calibration for adjusted magnetic field. 
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Tab.2: Calibration parameters for the PSO with and without the stop criterion. 

 

Stop 

Criterion 

Test 

# 

# of 

Iter. 
SF bias  

x 
1 

   353 [0.858  0.982] [-85.615  -50.381] 

√ 99 [0.863  1.027] [-86.025  -46.695] 

x 
2 

500 [0.597  0.649] [32.659     42.003] 

√   90 [0.602  0.629] [29.960     43.227] 

x 
3 

360 [0.913  1.050] [63.563     58.489] 

√ 104 [0.911  1.049] [62.955     58.503] 

x 
4 

301 [2.534  2.773] [50.356     51.822] 

√ 94 [2.535  2.773] [50.162     51.590] 

x 
5 

286 [0.787  0.856] [18.750     40.415] 

√     81 [0.775  0.859] [16.295     47.760] 

 
Table 2 manifests that the number of iterations required for convergence is decreased. 
Applying the stop criterion holds the accuracy of the estimated bias and scale factor while 
the number of iterations in most cases decreased to be less than 1/3  the required number 
without the proposed technique.   
 
6. CONCLUSION  

In this paper, a PSO based calibration algorithm is presented to estimate the values of the 
bias and scale factor applicable to low cost magnetometer. The main advantage of this 
technique is the use of the artificial intelligence which does not need any error modeling or 
awareness of the nonlinearity. The estimated bias and scale factors from the proposed 
algorithm improved the heading accuracies and the results are also statistically significant. 
This technique would help in the pedestrian navigation to decrease the heading error of the 
user. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) 
when combined with the INS and the available RF signals, especially in the indoors 
environments. Clearly, the proposed algorithm beside the auto-selection and stop-criterion 
techniques decreased the required time for the calibration process extending the opportunity 
to apply the proposed algorithm in real-time navigation applications. 
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