Polskie Towarzystwo Fotogrametrii i Teledetekcji oraz Katedra Fotogrametrii i Teledetekcji Wydziału Geodezji i Gospodarki Przestrzennej Uniwersytetu Warmińsko-Mazurskiego w Olsztynie

Archiwum Fotogrametrii, Kartografii i Teledetekcji Vol. 9, 1999, s. 25-34 ISBN 83-88039-51-2

Witold Fedorowicz-Jackowski Krzysztof Halicki Jarosław Jopa

OCENA DOKŁADNOŚCI AUTOMATYCZNEJ AEROTRIANGULACJI NA PODSTAWIE EKSPERYMENTU OEEPE I ISPRS UZUPEŁNIONA O WYNIKI BADAŃ PRZEPROWADZONYCH W LABORATORIUM TELEDETEKCJI I GEOINFORMATYKI GEOSYSTEMS POLSKA¹

1. Wstęp

Ocena jakości wyników przetworzeń fotogrametrycznych wymaga uwzględnienia jakości danych źródłowych wykorzystanych do ich uzyskania. Aerotriangulacja jest najczęściej etapem poprzedzającym proces automatycznego tworzenia numerycznego modelu terenu, tworzenia stereopar, określania współrzędnych punktów terenowych w przestrzeni trójwymiarowej oraz ortorektyfikacji. Z aerotriangulacją związane są dwa zadania:

- Pomiar współrzędnych obrazowych dla punktów wiążących (ang.- tie points) występujących w pasach pokrycia podłużnego i poprzecznego zdjęć.
- 2. Obliczanie parametrów orientacji zewnętrznej dla każdego zdjęcia lub obrazu analizowanego w projekcie.

Orientacja zewnętrzna określa położenie i orientację kamery lub sensora, które miały miejsce w momencie pozyskiwania obrazu. Pomierzone współrzędne punktów wiążących oraz terenowe współrzędne punktów osnowy podstawia się do równań, z których następnie wyznaczane są elementy orientacji zewnętrznej. Z tego względu jakość pomiarów tych punktów ma decydujący wpływ na dokładność określania parametrów orientacji zewnętrznej. Parametry orientacji zewnętrznej są następnie wykorzystywane we wszystkich pozostałych procesach produkcji fotogrametrycznej.

Konwencjonalne techniki aerotriangulacji wymagały ręcznego pomiaru punktów wiążących a następnie obliczenia orientacji zewnętrznej. Klasyczne techniki aerotriangulacji używane były również do pomiaru metodami fotogrametrycznymi terenowych punktów osnowy. Tak więc, zasadniczą i jednocześnie najbardziej pracochłonną fazę aerotriangulacji stanowiło zawsze pomierzenie punktów wiążących.

¹ Materiał przygotowany na podstawie publikacji udostępnionej przez firmę ERDAS, Inc. oraz prac własnych GEOSYSTEMS Polska.

Z tych właśnie względów rozwijane były automatyczne techniki aerotriangulacji, których celem jest skrócenie i tym samym obniżenie kosztów tego procesu. Automatyczne techniki pomiaru punktów wiążących pozwalają na eliminację manualnej identyfikacji i pomiaru współrzędnych punktów leżących w pasach pokrycia zdjęć. W następstwie tego procesu stosuje się techniki wyrównania bloku zdjęć metodą wiązek (ang. – block bundle adjustment) w celu obliczania parametrów orientacji zewnętrznej dla całego szeregu lub bloku zdjęć oraz określenia trójwymiarowych współrzędnych wszystkich punktów wiążących.

Otrzymane w ten sposób parametry orientacji zewnętrznej są następnie wykorzystywane we wszystkich kolejnych etapach procesu przetworzeń fotogrametrycznych. Oczywiste jest więc, że jakość wyników aerotriangulacji ma decydujące znaczenie dla ostatecznej jakości wszystkich informacji geograficznych otrzymywanych w procesie przetworzeń i analizy zdjęć lub obrazów.

Fotogrametryczny moduł systemu ERDAS Imagine zwany OrthoBASE zawiera zestaw niezbędnych narzędzi wymaganych do automatycznej aerotriangulacji zarówno pojedynczych zdjęć jak i bloków obrazów. Aerotriangulacja jest terminem tradycyjnie związanym z triangulacją zdjęć lotniczych. Triangulacja blokowa odnosi się do szerszego zakresu zobrazowań terenu obejmujących zdjęcia lotnicze, obrazy satelitarne, obrazy rejestrowane kamerami cyfrowymi i video a także inne typy obrazów niemetrycznych. Chociaż moduł OrthoBASE umożliwia przetwarzanie zobrazowań różnego rodzaju, opisana w niniejszym dokumencie ocena dokładności odnosi się do aerotriangulacji zdjęć lotniczych.

W 1997 roku Europejska Organizacja Doświadczalnych Badań Fotogrametrycznych (OEEPE) oraz Międzynarodowe Towarzystwo Fotogrametrii i Teledetekcji (ISPRS) przygotowały eksperyment, którego celem była ocena jakości automatycznego pomiaru punktów dowiązania w procesie aerotriangulacji.

Ten pomiar, uznawany powszechnie jako najistotniejsza faza aerotriangulacji i tym samym determinujący dokładność jej wyników, wykonywany był za pomocą kilku, komercyjnie dostępnych systemów fotogrametrycznych na podstawie pięciu, tych samych zestawów danych wyjściowych (ang. - benchmark data sets). Wyniki zostały opublikowane przez 8 Grupę Roboczą II Komisji ISPRS (Heipke et al., 1998).

Rezultaty i porównania zawarte w tym dokumencie są ściśle związane z wyżej wymienioną publikacją naukową.

Instytut Fotogrametrii Üniwersytetu w Hanowerze (uczestnik eksperymentu OEEPE) testował moduł OrthoBASE wykorzystując tylko 2 z 5 wspomnianych zestawów danych oraz dodatkowo przeprowadził własne testy na bloku złożonym ze 100 zdjęć lotniczych.

W Laboratorium Teledetekcji i Geoinformatyki GEOSYSTEMS Polska przeprowadzono niezależnie własne testy dokładnościowe wykorzystując jeden blok zdjęć oraz dwa systemy cyfrowe stosowane w firmie w warunkach produkcyjnych do realizacji opracowań fotogrametrycznych: Softplotter, ver. 1.7 (Autometric, Inc.) i OrthoBASE, ver. 1.0 (ERDAS, Inc). Wyniki przeprowadzonych badań zostały zaprezentowane w niniejszym dokumencie jako uzupełnienie testów OEEPE.

2. Dane

Przedstawione zostaną w tym miejscu wszystkie z omawianych w tym dokumencie zestawów danych wraz z otrzymanymi wynikami aerotriangulacji. Zestaw "Oldenberg" nie był częścią eksperymentu OEEPE, natomiast zestawy danych "OSU" i "Montserrat" były w eksperymencie wykorzystane. Zestaw danych "Warszawa" był przetwarzany jedynie w firmie GEOSYSTEMS Polska.

"Oldenberg"

Zestaw danych "Oldenberg" zawierał zdjęcia w skali 1:12 000 zeskanowane z rozdzielczością 24 µm (1058 dpi). Terenowa wielkość piksela wynosiła w tym przypadku 0.29 metra. Blok danych składał się ze 100 zdjęć ułożonych w 4 szeregach (po 25 zdjęć w szeregu). Do testu użyto 15 punktów osnowy (GCP) i 27 punktów kontrolnych. Punkty kontrolne zostały użyte do niezależnej weryfikacji jakości automatycznej aerotriangulacji.

Uniwersytet w Ohio ("OSU")

Zestaw "OSU" tworzyły zdjęcia w skali 1:4 000 zeskanowane z rozdzielczością 25 µm (1016 dpi). Rozdzielczość terenowa wynosiła 0.10 m. Blok danych składał się z 9 zdjęć w konfiguracji 3 x 3 zdjęcia. Użyto 4 punktów osnowy GCP łącznie z 67 punktami kontrolnymi. Punkty kontrolne użyto również do niezależnej weryfikacji jakości automatycznej aerotriangulacji. W tabeli 4 przedstawiono ilość punktów osnowy i punktów kontrolnych wykorzystanych do oszacowania dokładności aerotriangulacji wykonanej za pomocą modułu IMAGINE OrthoBASE. Nie jest pewne, czy ta sama liczba i typ punktów osnowy i punktów kontrolnych została użyta w testach OEEPE.

"Montserrat"

Zestaw "Montserrat" zawiera zdjęcia w skali 1:15 000 zeskanowane z rozdzielczością 30 µm (847 dpi). Rozdzielczość terenowa wynosiła 0.45 m. Blok danych tworzyło 9 zdjęć w konfiguracji 3 x 3 zdjęcia. Użyto 8 punktów osnowy łącznie ze 168 punktami kontrolnymi. Punkty kontrolne zostały wykorzystane do niezależnej weryfikacji jakości automatycznej aerotriangulacji. Ilość punktów osnowy i punktów kontrolnych użytych do oszacowania dokładności aerotriangulacji wykonanej za pornocą modułu IMAGINE OrthoBASE przedstawiono w tabeli 4. Podobnie jak w poprzednim przypadku, nie jest pewne, czy ta sama liczba i typ punktów osnowy i punktów kontrolnych została użyta w testach OEEPE.

"Warszawa"

Test został przeprowadzony przez firmę GEOSYSTEMS Polska w 1999 roku. Wykorzystano kolorowe zdjęcia Warszawy w skali 1:20 000 wykonane kamerą RMK (ck = 152 mm) w październiku 1996 roku. Zdjęcia zeskanowano z rozdzielczością 30 μ m (847 dpi) na skanerze fotogrametrycznym Ortho Vision 950 firmy XL.Vision. Rozdzielczość terenowa wynosiła 0.6 m. Blok obejmował 2 modele fotogrametryczne. Użyto 7 punktów osnowy (GCP) łącznie z 8 punktami kontrolnymi wykorzystanymi do niezależnej weryfikacji jakości procesu automatycznej aerotriangulacji. Punkty GCP pomierzono w terenie za pomocą GPS z dokładnością ograniczoną zdolnością do identyfikacji tych punktów na zdjęciu (nie dokonano sygnalizacji punktów przed nalotem). Testy z wykorzystaniem fotogrametrycznych systemów SoftPloter i OrthoMAX przeprowadzono na stacji roboczej SiliconGraphics O₂ (procesor R 10000 SC, 175 MHz, 64 Mb RAM, system operacyjny IRIX 6.3). Do testowania modułu OrthoBASE systemu ERDAS Imagine zastosowano komputer PC z systemem operacyjnym Windows NT (procesor AMD K6-2, 300 MHz, 64 Mb RAM).

Tabela 1 przedstawia dodatkowe informacje związane z testami danych przeprowadzonych przez OEEPE ("OSU" i "Montserrat") i firmę GEOSYSTEMS Polska.

Zestaw danych	"OSU"	"Montserrat"	"Warszawa"
Pokrycie terenu	obszar zabudowany,	las, częściowo	obszar zabudowany
	częściowo drzewa	obszar zabudowany	(fragment dzielnicy Ursynów)
Typ topografii	płaski, budynki	pagórkowaty	Płaski, wysokie budynki
Skala zdjęć	1:4 000	1:15 000	1:20 000
Kamera	Wild RC 10	Zeiss RMK TOP	Zeiss RMK A15/23
Ogniskowa	150 mm	150 mm	152 mm
Data lotu	wrzesień, 1995	maj, 1995	październik, 1996
Material (film)	czarno-biały	czarno-biały	kolor
Liczba obrazów	9(3X3)	9(3X3)	3 (3 X 1)
Pokrycie	60% p. podł.,	60% p. podł.,	60% p. podł.,
	60% p. poprz.	30% p. poprz.	30% p. poprz.
Typ skanera	LH DSW 200	Zeiss PS1	Ortho Vision 950.
Rozmiar piksela	25 µm (1016 dpi)	30 µm (847 dpi)	30 µm (847 dpi)
Wykonawca zdjęć	Uniwersytet w Ohio/TU Munchen	ICC, Barcelona	Dedal-Foto

Tabela 1. Informacje o danych

3. Wyniki

Tabela 2 przedstawia zestawienie wyników automatycznej aerotriangulacji wykonanej dla wszystkich czterech testowanych bloków.

Zestaw danych	Liczba zdjęć	Skala zdjęć	Rozdziel- czość skano- wania (µm)	Liczba punktów osnowy	Liczba punktów kontrol.	Przec. liczba punktów wiążących na zdjęciu	σ0 (μm)	błąd (piksel)
Oldenburg	100	12000	24	15	27	227	6.7	0.28
OSU	9	4000	25	4	67	310	8.0	0.32
Montserrat	9	15500	30	8	168	302	4.37	0.15
Warszawa IMAGINE OrthoBASE	3	20000	30	7	8	102	9.9	0.33
Warszawa SoftPlotter	3	20000	30	7	8	169	8.7	0.29

Tabela 2. Zestawienie wyników

Moduł OrthoBASE umożliwia automatyczną identyfikację i pomiar współrzędnych obrazowych punktów wiążących. Przeciętna liczba punktów wiążących przypadająca na jedno zdjęcie przedstawiona została w tabeli 2. Błąd standardowy σ_o zamieszczony w tabeli 2 jest ogólnym wskaźnikiem jakości aerotriangulacji i został obliczony po jej zakończeniu. Grube błędy zostały przez oprogramowanie automatycznie zidentyfikowane i wyeliminowane.

Błąd σ_o jest wynikiem analizy odchyłek obliczanych dla obserwacji szacowanych i wyrównywanych. Odnosi się do odchyłek liczonych zarówno dla współrzędnych obrazowych punktów osnowy (GCP) jak i punktów wiążących. W każdym z przypadków ogólny błąd wyrażony w pikselach był mniejszy od 1/3 wielkości piksela. Obliczenie stosownych błędów RMS dla punktów osnowy (GCP) i punktów wiążących jest sprawdzianem ogólnej jakości aerotriangulacji. Tabela 3 zawiera błędy RMS dotyczące punktów osnowy (GCP) i punktów kontrolnych obliczone dla wszystkich czterech zestawów danych. Stosunkowo większe błędy RMS odnoszące się do współrzędnych wysokości (Z) punktów osnowy (GCP) i punktów kontrolnych wynikają ze stosunku bazowego B/H (baza/wysokość fotografowania) oraz szerokiego kąta stożka kamery fotogrametrycznej.

Zestaw danych	Rozdziel. terenowa		RMS (cm)		,	RMS (cm)	
	(cm)	Punkt osnowy X	Punkt osnowy Y	Punkt osnowy Z	Punkt kontrol. X	Punkt kontrol, Y	Punkt kontrol. Z
Oldenberg	29	6.9	9.6	21.7	9.1	8.7	32.5
OSU	10	1.0	1.1	2.0	1.8	1.9	3,5
Montserrat	45	2.9	4.0	2.3	2.8	3.3	10.9
Warszawa SoftPlotter	60	11.6	8.0	6.8	24.8	14.5	32.5
Warszawa Imagine OrthoBASE	60	22.7	14.7	2.8	37.2	23.0	35.2

Tabela 3. Wyniki pomiarów punktów osnowy i punktów kontrolnych

Tabela 4 przedstawia ilość punktów zebranych dla poszczególnych bloków. Przy większej ilości punktów wzrasta powtarzalność (redundancja) obserwacji, co z kolej powoduje zwiększenie wiarygodności ostatecznych wyników.

29

Nazwa bloku	Liczba zdjęć	Liczba punktów osnowy	Liczba punktów kontrolnych	Liczba punktów na zdjęciu	Przeciętna liczba punktów wiążących na zdjęciu	Ogólna liczba punktów wiążących
Oldenberg	100	15	27	149-337	227	9180
OSU	9	4	67	156-393	310	1179
Montserrat	9	8	168	131-553	302	1301
Warszawa SoftPlotter	3	7	8	84-138	102	138
Warszawa Imagine OrthoBASE	3	7	8	148-246	169	246

Tabela 4. Liczba analizowanych punktów

Ze względu na znaczne pokrycie podłużne i poprzeczne istniejące pomiędzy poszczególnymi zdjęciami bloków istotne było przeprowadzenie pomiarów punktów wiążących i punktów osnowy (GCP) w pasach pokrycia zdjęć. Tabela 5 przedstawia liczbę automatycznie zbieranych punktów wiążących dla każdego z analizowanych bloków, które ukazywały się jednocześnie na 2, 3, 4, 5, 6, 7, 8 i 9 zdjęciach. Dla przykładu zestaw "OSU" zawiera 1 punkt dowiązania, który został automatycznie zidentyfikowany i pomierzony na wszystkich 9 zdjęciach tworzących blok. Z oczywistych względów liczba punktów pojawiających się na 2 kolejnych zdjęciach bloku będzie największa. Dla zestawu "Warszawa" obejmującego tylko 3 zdjęcia pomiar punktów dowiązania przeprowadzono automatycznie przy użyciu obu testowanych systemów niezależnie (stąd różnica w liczbie punktów), por. tabela niżej.

Nazwa bloku	Liczba punktów na 2 zdjęciach	Liczba punktów na 3 zdjęciach	Liczba punktów na 4 zdjęciach	Liczba punktów na 5 zdjęciach	Liczba punktów na 6 zdjęciach	Liczba punktów na 7 zdjęciach	Liczba punktów na 8 zdjęciach	Liczba punktów na 9 zdjęciach
Oldenberg	5597	3293	376	135	106	-	-	-
OSU	919	162	52	25	18	1	1	1
Montserrat	1191	95	11	2	0	-	-	-
Warszawa SoftPlotter	138	84	-	. <u></u> .	-	-		-
Warszawa Imagine OrthoBASE	246	148	-	-	-	-	-	

Tabela 5. Liczba punktów pojawiających się w pasach pokrycia zdjęć

W tabelach 6 i 7 przedstawiono wyniki eksperymentu OEEPE otrzymane dla zestawów "Montserrat" i "OSU". Zaprezentowano również uczestników oraz nazwy wykorzystanych do przetworzeń systemów fotogrametrycznych

Tabela 6.	Wyniki	dla zestawu	"Montserrat"
-----------	--------	-------------	--------------

Uczestnicy	Skrót	Oprogramowanie	σ0 (um)	błąd (piksel)
LH Systems, San Diego	LHS	HATS	5.8	0.19
		wersja 3.2.1.1	0.0	0.10
Bundesamt fur Geod. U. Kart.,	BKG	HATS	3.1	0.10
Frankfurt/M.		wersja 3.2.1.2		
Institute for Photogrametry,	EPFL	HATS	6.0	0.20
EPFL Lausanne		wersja 3.1.3k		
National Land Survey of Finland,	NLS-SF	HATS	6.5	0.22
Helsinki		Wersja 3.2.1.2		
National Land Survey of Sweden	NLS-SWE	HATS	7.4	0.25
		wersja 4.0.8		
School of Geomatics, UNSW,	UNSW	HATS	4.3	0.14
Sydney		wersja 3.2.1		
Swissphoto, Regensdorf	SWPH	HATS	6.4	0.21
		wersja 3.2.1.2		
Inpho GmbH	Inpho	Match AT	3.3	0.11
		wersja 2.1.0		
Intergraph, Huntsville	Intergraph	Match AT	6.0	0.20
		wersja 2.1.1	_	
Compagnia Generale	CGR	Match AT	4.3	0.14
Ripreseaeree, Parma		wersja 2.1.1		-
Hansa Luttolid, Munster	HL	Match AT	4.6	0.15
Dhotogrammatria Cashill		wersja 2.1.1		
Munchen	Ph GmbH	Match Al	5.2	0.17
Corl Zoise, Oberkeeber	07	Wersja Z. T. T	07	
Carr Zeiss, Oberköchen	62	Phodis A I	6.7	0.22
Raverisches	DIMA	Wersja 2.0. I	0.0	0.04
	B-LVA	Phodis A1	6.2	0.21
Munchen		wersja 2.0.0		
General Command of Mapping,	GCM	Phodis AT	5.7	0.19
Ankara		wersja 2.0.0		
Landesvermessung +	LGN	Phodis AT	5.9	0.20
Geobasisdaten, Hannover		wersja 2.0.0		1000
Dip. Ing. E Idraul. Amb. E del Rilev., Politec. di Milano	DIIAR	własne	7.4	0.25
Finnish Geodetic Institute,	FGI	własne	5.4	0.18
Masala		and the second		
Katedra Fotogrametrii i Teledetekcji ART., Olsztyn	KFIT, ART	własne	7.4	0.25
Instytut Fotogrametrii w	IPI	IMAGINE	4.4	0.15
Hannoverze		OrthoBASE		

Tabela 7, Wyniki dla zestawu "OSU"

Uczestnik	Skrót	Oprogramowanie	σ0 (μm)	błąd (piksel)
Instytut Fotogrametrii, EPFL Lausanne	EPFL	HATS wersja 3.1.3k	7.0	0.28
National Land Survey of Sweden	NLS- SWE	HATS wersja 4.0.8	6.7	0.27
School of Geomatics, UNSW, Sydney	UNSW	HATS wersja 3.2.1	6.2	0.25
Swissphoto, Regensdorf	SWPH	HATS wersja 3.2.1.2	6.9	0.28
Inpho GmbH, Stuttgard	Inpho	Match AT wersja 2.1.0	7.6	0.30
Intergraph, Huntsville	Intergra ph	Match AT wersja 2.1.1	7.5	0.30
Compagnia Generale Ripreseaeree, Parma	CGR	Match AT wersja 2.1.1	7.4	0.30
Carl Zeiss, Oberkochen	CZ	Phodis AT wersja 2.0.1	8.2	0.33
Bayerisches Landesvermessungsamt, Munchen	B-LVA	Phodis AT wersja 2.0.0	7.7	0.31
General Command of Mapping, Ankara	GCM	Phodis AT wersja 2.0.0	7.7	0.31
Chair for Photogrammetry and Rem. Sensin, TUMunchen	TUM	własne	9.3	0.37
Dip. Ing. E Idraul. Amb. E del Rilev., Politec. Di Milano	DIIAR	własne	8.3	0.33
Institute for Photogrammetry, Hannover	IPI	własne	7.1	0.28
Instytut Fotogrametrii w Hannoverze	IPI	IMAGINE OrthoBASE	8.0	0.32

Do każdego z przedstawionych zbiorów danych są dostarczone odpowiadające im wyniki IMAGINE OrthoBASE.

Na zakończenie interesujące wydaje się porównanie wydajności testowanych w GEOSYSTEMS Polska systemów fotogrametrycznych (Softplotter i OrthoBASE). Odpowiednie dane przedstawiono w tabeli 8. Na uwagę zasługuje niezwykła wydajność modułu OrthoBASE. Wydajność, łatwość obsługi, przyjazny interfejs użytkownika, wspomniana wcześniej możliwość automatycznego wykrywania i eliminacji błędów grubych oraz brak ograniczeń dotyczących ilości generowanych punktów wiążących pozwalają uznać testowany moduł nie tylko za spełniający wszelkie wymogi stawiane fotogrametrycznym systemom produkcyjnym, lecz również za jeden z najlepszych w swojej klasie.

Nazwa oprogramowania	Liczba automatycznie wygenerowanych punktów wiążących	Czas trwania (w godzinach)
SoftPlotter	6	0.3
	30	1.2
	138	5
IMAGINE OrthoBASE	6	0.1
I	30	0.15
	138	0.2

Tabela 8. Porownanie czasu generowania pi	unktów wiążących	dla zestawu	"Warszawa"
---	------------------	-------------	------------

Podsumowując, należy stwierdzić, że wyniki dokładnościowe testów dotyczących automatycznej aerotriangulacji uzyskanych zarówno w ramach eksperymentu OEEPE jak i porównań przeprowadzonych w GEOSYSTEMS Polska są do siebie zbliżone. Błąd standardowy nie przekracza wartości 1/3 piksela. Nieco wyższe wartości błędów dla bloku Warszawa wynikają z faktu, że punkty osnowy użyte do aerotriangulacji nie były sygnalizowane przed nalotem, a wybrano je na już wykonanych zdjęciach.

Potwierdzono wysoką użyteczność modułu OrthoBASE, którego dodatkową zaletą jest stosunkowo niska cena oraz dostępność dla użytkowników powszechnie używanych komputerów klasy PC. Wyżej wymienione zalety sprawiają, że testowany moduł może być z powodzeniem wykorzystywany do w pełni profesjonalnych opracowań fotogrametrycznych realizowanych w warunkach produkcyjnych.

Literatura

1. Heipke, C et al., 1998., The OEEPE-ISPRS test 'Performance of tie point extraction in automatic aerial triangulation'. Status and first results. International Archives of Photogrammetry and Remote Sensing, Volume 32, Part 2, Commission II, Cambridge, England.

Autorzy dr Witold Fedorowicz-Jackowski mgr inż. Krzysztof Halicki mgr inż. Jarosław Jopa Laboratorium Teledetekcji i Geoinformatyki GEOSYSTEMS Polska 00-716 Warszawa, ul. Bartycka 18a tel. (0-22) 851 11 66 e-mail: office@geosystems.com.pl

Recenzował dr Zygmunt Paszotta

Rys. 1. Okno dialogowe IMAGINE OrthoBASE – Pomiar znaczków tłowych

Rys. 2. Okno dialogowe IMAGINE OrthoBASE - Pomiar punktów kontrolnych